摘要:研究了65Mn鋼激光焊接後微觀組織和硬度的變化,結果表明:焊接質量良好,焊縫區組織由中心到邊緣依次生成細小等軸晶、枝狀晶、胞狀晶。熱影響區組織主要是針狀馬氏體、貝氏體以及少量鐵素體。焊接接頭主要由細小的α—Fe及Fe3C、FeSi等相組成。焊縫區平均硬度為HV710,熱影響區硬度最高值約為HV770,從熱影響區到基材硬度明顯下降。
65Mn鋼作為常用機器零件鋼,廣泛應用於機械、交通等部門。在做傳統焊接時,由於65Mn的含碳量過高,有著難以克服的局限性,如熱影響區大,熱脆形性嚴重,而難以滿足需求,與傳統焊接方法相比,激光焊接具有深寬比大、焊縫窄、焊縫結合強度高、熱影響區小、焊接變形小及對周圍組織無影響等特點而得到廣泛應用[1],目前,有關65Mn鋼激光焊接的研究很少,本文對65Mn鋼進行了CO2激光深熔焊的實驗研究,重點分析了65Mn鋼激光焊接後焊縫及熱影響區的組織和硬度變化,為將來65Mn鋼激光焊接的應用提供理論指導。
1 實驗材料及試驗方法
1.1 實驗材料
取退火狀態下的65Mn鋼棒料,其成分如表1所示。
1.2 試驗方法
表1 基材的化學成分(質量百分比%)
C | S | P | Si | Mn | Cr |
0.62~0.70 | 0.20% | < 0.040 | 0.17~0.37 | 0.90~1.20 | < 0.25 |
試樣采用鉬絲線切割成厚度為1mm,半徑為12.5mm半圓柱狀,使用前用400金相砂紙打磨表面,再用丙酮清洗備用。激光焊接試驗采用TJ—HL—T5000型5kW CO2激光器,,光斑尺寸為3mm,焦距320mm, 焊縫長度為25mm,采用Ar氣作為保護氣體。用GX51型奧林巴斯金相顯微鏡進行顯微組織觀察和拍照,用D/Max-2200型全自動X射線衍射儀進行物相分析,用HV-1000顯微硬度計進行顯微硬度測試,載荷砝碼200g,加載時間20s。對25個焊接試樣進行焊後觀察,找出焊縫成形好,接頭狹窄,變形小,焊接焊縫筆直、光滑、均勻連續的叁個最好試樣進行分析,工藝如表2。
表2 激光焊接工藝參數
試樣編號 | 焊接功率(KW) | 焊接速度(mm/s) | 焦距(mm) |
1 | 1.5 | 7 | 320 |
2 | 1.5 | 9 | 320 |
3 | 2.0 | 9 | 320 |
2 實驗結果分析
圖1為焊縫中心→近中心區→邊緣區的組織分布,由圖1(a)可以看出,焊縫中心主要為等軸晶分布,近中心區為胞狀晶與樹枝晶的混合組織。由圖1(b)可知,在靠近熱影響區的邊緣區為少量的胞狀晶。
在進行激光焊接時,激光束與基材作用時間短,當光束移開後,熔池金屬迅速冷卻,然後快速凝固。在靠近熔池邊緣,由於與母材接觸,液態金屬的結晶速度比熔池中心大,這樣使焊縫金屬生成胞狀晶。在近中心區,由於溫度梯度沒有邊緣區高,成份過冷度大,導致該區焊縫金屬多數按樹枝晶長大。而在焊縫中心區域,熔池金屬溫度梯度很小,熔池中未熔化的懸浮質點為非自發形核的現成凝固表面,這些晶粒不受其他散熱條件的影響,可以自由生長,促使焊縫形成等軸晶[2-5]。
2.2熱影響區金相組織
圖2為焊接熱影響區組織,由圖2(a)可見:焊接的熱影響區粗晶區主要是由針狀馬氏體組成,這是由於在靠近熔合線附近,溫度在1350 ºC,奧氏體晶粒明顯長大,快速冷卻後轉變成了粗大的高碳針狀馬氏體。
由圖2(b)可見,相變重合區主要是由較為細小的針狀馬氏體組成,這是因為,在這個區域,焊接時的溫度在950 ºC,奧氏體晶粒來不及長大,冷卻速度沒有熔合線附近快,冷卻後轉變成為細小的針狀馬氏體+鐵素體+下貝氏體組織。
在相變不完全重合區,由於峰值溫度在800 ºC,而且Ac1以上時間短,只有部分組織奧氏體化,冷卻後轉變為細小針狀馬氏體+鐵素體+上貝氏體+下貝氏體組織,如圖2(c)所示。
2.3 ΧRD衍射分析
圖3為3號試樣的XRD衍射圖譜。由衍射結果可以看出,焊接接頭相組成除了基體相α—Fe外,還有Fe3C、FeSi等相。由於α—Fe的硬度較低,而Fe3C和FeSi的硬度比較高,這些相的存在,可以保證焊接區有良好的強韌性配合。
叁種焊接工藝的焊縫接頭的硬度分布曲線從圖4可以看出其硬度分布曲線的走向成叁個明顯的區域:一是中間突起的平台區域,這是焊縫區域,平均硬度為HV710,其硬度值要明顯高於其他區域;二是從平台區域往兩邊各有一個斜率較大的坡度,說明硬度值在這個區域有一個明顯的銳減,這部分是焊接熱影響區,從上面的組織分析可以看出這部分還是有馬氏體和貝氏體存在.所以硬度值還是比較高的;第叁區又是一個硬度平台,這是基材組織,平均硬度為HV230左右。
3 小結
(1) 65Mn鋼經激光焊接後,焊接區的組織發生了較大的變化,焊縫區組織依次為細小等軸晶→枝狀晶→胞狀晶。熱影響區粗晶區為粗大的針狀馬氏體,相變重合區為細小針狀馬氏體+鐵素體+下貝氏體,不完全相變重合區為針狀馬氏體+鐵素體+上貝氏體+下貝氏體組織。
(2)焊接接頭的基體相為α—Fe,其上分布有結晶析出的Fe3C、FeSi等相。
(3)焊接接頭的硬度分布規律為:焊縫區域平均硬度最大,平均為HV710,在焊縫與熱影響結合區達到最高值為HV770,從熱影響區到基材硬度明顯下降。
參考文獻
[1] 劉其斌. 激光加工技術及其應用[M].北京:冶金工業出版社 2007.
[2] 崔忠圻.金屬學與熱處理.北京:機械工業出版社 2000.
[3] 張永康. 激光加工技術[M].北京:化學工業出版社 2004.
[4] 王紅英,李志軍 AZ61鎂合金激光焊接接頭的組織與性能[J] 中國有色金屬學報,2006,16(8):1388-1392.
[5] 李亞江. 焊接組織性能與質量控制[M].北京:化學工業出版社 2004.
(來源:現代模具 作者 貴州大學蔡家關校區材料學院劉其斌 李賓 白麗鋒